If it's not what You are looking for type in the equation solver your own equation and let us solve it.
v^2+14v+31=0
a = 1; b = 14; c = +31;
Δ = b2-4ac
Δ = 142-4·1·31
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-6\sqrt{2}}{2*1}=\frac{-14-6\sqrt{2}}{2} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+6\sqrt{2}}{2*1}=\frac{-14+6\sqrt{2}}{2} $
| 2(1+2w)=10 | | -4x+31=3(1-3x)-3 | | 3y=50+2y-3 | | 7x+24=0 | | 54=9x+4 | | 5+2y-8+y=y+8+5-2y | | 9q-3=-21 | | 8(2x-11)=-4(7x+1) | | X+2y=990 | | 3(4−t)+t2=8 | | 3-9x=21-15x | | 19-k=55 | | 7=-10+z-5 | | a+9-20=290 | | 10a-3210=90 | | 3=x+30/6 | | 3t=-7 | | x^2−6x+20=6x | | 2k3+12=19 | | 5(x−4)=5 | | x+6=8-7 | | 4x–9=x–3 | | X3-10+3x3+14=20 | | F=9/7(n-14) | | 2x-3÷3-3x+1=1 | | x÷2=25 | | 4x-14+3x=7+7x-19 | | 0,5=2,25*100/(100+x) | | 0,5=2,25*100/100+x | | 6q+8=26 | | x=10-(x-4) | | x=10-(x+4) |